4.1 Review

Role of plant polyphenols in genomic stability

Publisher

ELSEVIER
DOI: 10.1016/S0027-5107(01)00073-2

Keywords

plant polyphenol; flavonoid; genomic instability; topoisomerase II poisons; anti-inflammatory; anti-oestrogen; antioxidant

Ask authors/readers for more resources

Polyphenols are a large and diverse class of compounds, many of which occur naturally in a range of food plants. The flavonoids are the largest and best-studied group of these. A range of plant polyphenols are either being actively developed or currently sold as dietary supplements and/or herbal remedies. Although. these compounds play no known role in nutrition (non-nutrients), many of them have properties including antioxidant. anti-mutagenic, anti-oestrogenic, anti-carcinogenic and anti-inflammatory effects that might potentially be beneficial in preventing disease and protecting the stability of the genome. However not all polyphenols and not all actions of individual polyphenols are necessarily beneficial. Some have mutagenic and/or pro-oxidant effects, as well as interfering with essential biochemical pathways including topoisomerase enzyme activities, prostanoid biosynthesis and signal transduction. There is a very targe amount of in vitro data available, but far fewer animal studies, and these are not necessarily predictive of human effects because of differences in bacterial and hepatic metabolism of polyphenols between species. Epidemiological studies suggest that high green tea consumption in the Japanese population and moderate red wine consumption in the French population may be beneficial for heart disease and cancer, and these effects may relate to specific polyphenols. A small number of adequately controlled human intervention studies suggest that some, but not all polyphenol extracts or high polyphenol diets may lead to transitory changes in the antioxidative capacity of plasma in humans. However, none of these studies have adequately considered long-term effects on DNA or the chromosome and unequivocally associated these with polyphenol uptake. Furthermore, clinical trials have required intravenously administered polyphenols at concentrations around 1400 mg/m(2) before effects are seen. These plasma concentrations are unlikely to be achieved using the dietary supplements currently available. More focused human studies are necessary before recommending specific polyphenolic supplements at specific doses in the human population. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available