4.7 Article

The structure of four molecular cloud complexes in the BU-FCRAO Milky Way Galactic Ring Survey

Journal

ASTROPHYSICAL JOURNAL
Volume 551, Issue 2, Pages 747-763

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/320230

Keywords

galaxy : general; ISM : clouds; ISM : molecules; ISM : structure; radio lines : ISM; surveys

Ask authors/readers for more resources

We present a study of the structure of four molecular clouds from the Milky Way Galactic Ring Survey (GRS), a Boston University and Five College Radio Astronomy Observatory collaboration. The GRS is a new high-resolution survey in the (CO)-C-13 J = 1 --> 0 spectral line of the inner Galaxy and the 5 kpc ring, the Milky Way's dominant star-forming structure. Because of the smaller line widths of (CO)-C-13 compared to (CO)-C-12, we can avoid velocity crowding and establish accurate kinematic distances to the clouds. The kinematic distance ambiguity in the first Galactic quadrant is resolved using self-absorption in complementary high-resolution atomic hydrogen data. The four clouds are selected to span a large range of star formation activity, from the quiescent cloud GRSMC 45.60+0.30, which shows no signs of high-mass star formation, to W49, the most luminous star-forming region in the Galaxy. We use a three-dimensional Gaussian clump decomposition to identify clumps in the clouds and to investigate their properties. Each cloud has the same clump mass spectrum, dN/dM proportional to M-1.8, independent of star formation activity. We do not find significant differences in the slopes of the relations of density, line width, and clump mass as a function of clump size among the clouds. The size-density and size-line width relations show considerable scatter. Compared to the conventional Larson scaling laws, we find systematically flatter slopes for the size-density and size-line width relations and a higher power-law index for the size-mass relation. In particular, the clump line widths for the most quiescent cloud GRSMC 45.60+0.30 are independent of clump size. While the clouds as a whole are gravitationally bound, most of the clumps are not; only a small fraction of the total number of clumps is self-gravitating. The active star-forming clouds have a higher fraction of gravitationally bound clumps and a higher mean cloud volume density than the more quiescent clouds. The gravitationally unbound clumps are possibly confined by the weight of the self-gravitating complex. The pressures needed to bind these clumps are largest for the active star-forming clouds, which have a much higher weight than the quiescent clouds. Alternatively, a high number of the gravitationally unbound clumps may be transient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available