4.7 Article

Hypothesis for the initiation of vasomotion

Journal

CIRCULATION RESEARCH
Volume 88, Issue 8, Pages 810-815

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hh0801.089603

Keywords

calcium imaging; calcium waves; cGMP; synchronization; vasomotion

Ask authors/readers for more resources

Vasomotion is the regular variation in tone of arteries. In our study, we suggest a model for the initiation of vasomotion. We suggest that intermittent release of Ca2+ from the sarcoplasmic reticulum (SR, cytosolic oscillator), which is initially unsynchronized between the vascular smooth muscle cells, becomes synchronized to initiate vasomotion. The synchronization is achieved by an ion current over the cell membrane, which is activated by the oscillating Ca2+ release. This current results in an oscillating membrane potential, which synchronizes the SR in the vessel wall and starts vasomotion. Therefore. the pacemaker of the vascular wall can be envisaged as a diffuse array of individual cytosolic oscillators that become entrained by a reciprocal interaction with the cell membrane. The model is supported by experimental data. Confocal [Ca2+](i) imaging and isometric force development in isolated rat resistance arteries showed that low norepinephrine concentrations induced SR-dependent unsynchronized waves of Ca2+ in the vascular smooth muscle. In the presence of the endothelium, the waves converted to global synchronized oscillations of [Ca2+](i) after some time, and vasomotion appeared. Synchronization was also seen in the absence of endothelium if 8-bromo-cGMP was added to the bath. Using the patch-clamp technique and microelectrodes, we showed that Ca2+ release can activate an inward current in isolated smooth muscle cells from the arteries and cause depolarization. These electrophysiological effects of Ca2+ release were cGMP dependent, which is consistent with the possibility that they are important for the cGMP-dependent synchronization. Further support for the model is the observation that a short-lasting current pulse can initiate vasomotion in an unsynchronized artery as expected from the model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available