4.7 Article

NMR characterization of clustered bistrand abasic site lesions: Effect of orientation on their solution structure

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 308, Issue 2, Pages 341-352

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2001.4587

Keywords

DNA structure; multiple damage site; clustered lesions; ionizing radiation; DNA damage

Funding

  1. NCI NIH HHS [CA47995, CA77094] Funding Source: Medline

Ask authors/readers for more resources

A unique characteristic of ionizing radiation and radiomimetic anticancer drugs is the induction of clustered damage: two or more DNA lesions (oxidized bases, abasic sites, or strand breaks) occurring in the same or different strands of the DNA molecule within a single turn of the helix. In spite of arising at a lower frequency than single lesions, clustered DNA damage represents an exotic challenge to the repair systems present in the cells and, in some cases, these lesions may escape detection and/ or processing. To understand the structural properties of clustered DNA lesions we have prepared two oligodeoxynucleotide duplexes containing adjacent tetrahydrofuran residues (abasic site analogues), positioned one in each strand of the duplex in a 5' or 3' orientation, and determined their solution structure by NMR spectroscopy and molecular dynamics simulations. The NMR data indicate that both duplex structures are right-handed helices of high similarity outside the clustered damage site. The thermal stability of the duplexes is severely reduced by the presence of the abasic residues, especially in a 5' orientation where the melting temperature is 5 degreesC lower. The structures show remarkable differences at the lesion site where the extrahelical location of the tetrahydrofuran residues in the (AP)(2)-5'-staggered duplex contrasts with their smooth alignment along the sugar-phosphate backbone in the (AP)(2)-3'-staggered duplex. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available