4.7 Article

Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins

Journal

FASEB JOURNAL
Volume 15, Issue 7, Pages 1149-1157

Publisher

WILEY
DOI: 10.1096/fj.00-0537com

Keywords

intravital; atherosclerosis; inflammation; selectin; neutrophils

Ask authors/readers for more resources

Leukocyte infiltration in atherosclerosis has been extensively investigated by using histological techniques on fixed tissues. In this study, intravital microscopic observations of leukocyte recruitment in the aorta of atherosclerotic mice were performed. Interactions between leukocytes and atherosclerotic endothelium were highly transient, thereby limiting the ability for rolling leukocytes to firmly adhere. Leukocyte rolling was abolished by function inhibition of P-selectin (P<0.001, n=8), whereas antibody blockage of E-selectin (n=10) decreased rolling leukocyte flux to 51 +/- 9.9% (mean+/-SE, P<0.01) and increased leukocyte rolling velocity to 162 +/- 18% (P<0.01) of pretreatment values. Notably, function inhibition of the integrin at, subunit (n=5) had no effect on rolling flux (107+/-25%, P=0.782) or rolling velocity (89+/-6.1%, P=0.147), despite endothelial expression of vascular cell adhesion molecule 1 (VCAM-1). Leukocytes interacting with atherosclerotic endothelium were predominantly neutrophils, because treatment with antineutrophil serum decreased rolling and neutrophil counts in peripheral blood to the same extent. In conclusion, we present the first direct observations of atherosclerosis in vivo. We show that transient dynamics of leukocyte-endothelium interactions are important regulators of arterial leukocyte recruitment and that leukocyte rolling in atherosclerosis is critically dependent on the endothelial selectins. This experimental technique and the data presented introduce a novel perspective for the study of pathophysiological events involved in large-vessel disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available