4.0 Article

Photocurrent measurement of PC and PVHgCdTe detectors

Publisher

US GOVERNMENT PRINTING OFFICE
DOI: 10.6028/jres.106.024

Keywords

detector; drift; HgCdTe; infrared; noise; photoconductive; photocurrent; photodiode; preamplifier

Ask authors/readers for more resources

Novel preamplifiers for working standard photoconductive (PC) and photovoltaic (PV) HgCdTe detectors have been developed to maintain the spectral responsivity scale of the National Institute of Standards and Technology (NIST) in the wavelength range of 5 mum to 20 mum. The linear PC mode preamplifier does not need any compensating source to zero the effect of the detector bias current for the preamplifier output. The impedance multiplication concept with a positive feedback buffer amplifier was analyzed and utilized in a bootstrap PV transimpedance amplifier to measure photocurrent of a 200 Ohm shunt resistance photodiode with a maximum signal gain of 10(8) V/A. In spite of the high performance lock-in used as a second-stage signal-amplifier, the signal-to-noise ratio had to be optimized for output of the photocurrent preamplifiers. Noise and drift were equalized for the output of the PV mode preamplifier. The signal gain errors were calculated to determine the signal frequency range where photocurrent-to-voltage conversion can be performed with very low uncertainties. For the design of both PC and PV detector preamplifiers, the most important gain equations are described. Measurement results on signal ranges and noise performance are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available