4.4 Article Proceedings Paper

Substrate recognition and catalysis by flap endonucleases and related enzymes

Journal

BIOCHEMICAL SOCIETY TRANSACTIONS
Volume 38, Issue -, Pages 433-437

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BST0380433

Keywords

DNA repair; exonuclease-1 (EXO-1); flap endonuclease 1 (FEN-1); gap endonuclease 1 (GEN-1); metal ion; xeroderma pigmentosum complementation group G (lambda PG)

Funding

  1. BBSRC [BB/F014732/1] Funding Source: UKRI
  2. Biotechnology and Biological Sciences Research Council [BB/F014732/1] Funding Source: Medline

Ask authors/readers for more resources

FENs (flap endonucleases) and related FEN-like enzymes [EXO-1 (exonuclease-1), GEN-1 (gap endonuclease 1) and XPG (xeroderma pigmentosum complementation group G)] are a family of bivalent-metal-ion-dependent nucleases that catalyse structure-specific hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair and recombination. In the case of FENs, the ability to catalyse reactions on a variety of substrates has been rationalized as a result of combined functional and structural studies. Analyses of FENs also exemplify controversies regarding the two-metal-ion mechanism. However, kinetic studies of T5FEN (bacteriophage T5 FEN) reveal that a two-metal-ion-like mechanism for chemical catalysis is plausible. Consideration of the metallobiochemistry and the positioning of substrate in metal-free structures has led to the proposal that the duplex termini of substrates are unpaired in the catalytically active form and that FENs and related enzymes may recognize breathing duplex termini within more complex structures. An outstanding issue in FEN catalysis is the role played by the intermediate (I) domain arch or clamp. It has been proposed that FENs thread the 5'-portion of their substrates through this arch, which is wide enough to accommodate single-stranded, but not double-stranded, DNA. However, FENs exhibit gap endonuclease activity acting upon substrates that have a region of 5'-duplex. Moreover, the action of other FEN family members such as GEN-1, proposed to target Holliday junctions without termini, appears incompatible with a threading mechanism. An alterative is that the I domain is used as a clamp. A future challenge is to clarify the role of this domain in FENs and related enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available