4.2 Article Proceedings Paper

Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics

Journal

ARTIFICIAL ORGANS
Volume 25, Issue 5, Pages 341-347

Publisher

BLACKWELL SCIENCE INC
DOI: 10.1046/j.1525-1594.2001.025005341.x

Keywords

computational fluid dynamics; hemolysis assessment

Ask authors/readers for more resources

A computational assessment or even quantification of shear induced hemolysis in the predesign phase of artificial organs (e.g., cardiac assist devices) would largely decrease efforts and costs of design and development. In this article, a general approach of hemolysis analysis by means of computational fluid dynamics (CFD) is discussed. A validated computational model of a microaxial blood pump is used for detailed analysis of shear stress distribution. Several methods are presented that allow for a qualitative assessment of shear stress distribution and related exposure times using a Lagrangian approach and mass distribution in combination with shear stress analysis. The results show that CFD offers a convenient tool for the general assessment of shear-induced hemolysis. The determination of critical regions and an estimation of the amount of blood subject to potential damage in relation to the total mass flow are shown to be feasible. However, awareness of limitations and potential flaws in CFD based hemolysis assessments is crucial.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available