4.4 Article Proceedings Paper

Regulation of Cdc45 in the cell cycle and after DNA damage

Journal

BIOCHEMICAL SOCIETY TRANSACTIONS
Volume 37, Issue -, Pages 926-930

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BST0370926

Keywords

Cdc45; cell cycle; checkpoint; DNA damage; DNA replication; genome stability

Ask authors/readers for more resources

The Cdc (cell division cycle) 45 protein has a central role in the regulation of the initiation and elongation stages of eukaryotic chromosomal DNA replication. In addition, it is the main target for a Chk1 (checkpoint kinase i)-dependent Cdc25/CDK2 (cyclin-dependent kinase 2)-independent DNA damage checkpoint signal transduction pathway following low doses of 8PDE (benzo[a]pyrene dihydrodiol epoxide) treatment, which causes DNA damage similar to UV-induced adducts. cdc45 interacts physically and functionally with the putative eukaryotic replicative DNA helicase, the MCM (mini-chromosome maintenance) complex, and forms a helicase active 'supercomplex', the CMG [cdc45-MCM2-7-GINS (go-ichi-ni-san)] complex. These known protein-protein interactions, as well as unknown interactions and post-translational modifications, may be important for the regulation of Cdc45 and the initiation of DNA replication following DNA damage. Future studies will help to elucidate the molecular basis of this newly identified S-phase checkpoint pathway which has Cdc45 as a target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available