4.5 Article

Fatigue and fracture properties of thin metallic foils

Journal

INTERNATIONAL JOURNAL OF FRACTURE
Volume 109, Issue 1, Pages 69-89

Publisher

SPRINGER
DOI: 10.1023/A:1010931414732

Keywords

dislocation structure; fatigue crack growth; fatigue threshold metallic foils; fracture topography; size effect; special fatigue testing device

Ask authors/readers for more resources

Metallic thin foils are essential structural parts in microsystems, which may be subjected to fatigue loading caused by thermal fluctuations and mechanical vibrations influencing their reliability in numerous engineering applications. It is well known that the fatigue properties of bulk material cannot be adopted for small scaled structures. For a better understanding of the `size-effect' in the present investigation fatigue crack growth near threshold in the high cycle fatigue regime and associated fracture processes were studied. Free-standing rolled and electrodeposited Cu-, Mo- and Al foils of thickness from 20 mum to 250 mum in different conditions have been tested in a special experimental set up operating at R = -1 and a testing frequency of 20 kHz. At a given constant strain value the fatigue crack growth behaviour has been recorded accompanied by intermittent observation of the change of the dislocation structure in the vicinity of the growing crack by use of the electron channeling contrast imaging (ECCI)-technique in a scanning electron microscope (SEM). In a load shedding technique fatigue threshold stress intensity factor values have been derived and compared with data of bulk material. Typical crack growth features were detected depending on thickness and grain sizes of the foils. Various criteria (compliance, extent of plastic zones and plastic strain gradients) were selected for the explanation of this anomalous behaviour. Additionally fractomicrographs of uniaxial strained and fatigued foils have been studied to obtain further insight of the effect of dimensional constraint.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available