4.7 Article

Physicochemical interactions between atrazine and clay minerals

Journal

APPLIED CLAY SCIENCE
Volume 18, Issue 5-6, Pages 211-222

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-1317(01)00024-2

Keywords

atrazine; clay minerals; adsorption; desorption; homoionic montmorillonites

Ask authors/readers for more resources

The aim of this work was to study the sorption behaviour of atrazine on clay minerals at low environmentally relevant concentrations. Adsorption and desorption isotherms of atrazine were determined on different clay minerals using the C-14 tracer technique. The adsorption isotherms are linear at pH 5.8 in the low concentration range studied. The adsorption constant Kd is proportional to the external surface in Na+ layer silicates, such as kaolinite; illite and montmorillonite. This implies that atrazine molecules do not intercalate even in swelling Nai clay minerals. The experiments with homoionic montmorillonites (Na+, Ca2+, Ni2+, Cu2+ and Fe3+) indicate a correlation between the adsorption constant and the hydrolysis constant of the exchangeable cation. This suggests a participation of the protonated atrazine molecules in sorption due to electrostatic interactions. It is assumed that adsorption shifts the chemical equilibrium to the side of the protonated form for Men+ montmorillonites with a low hydrolysis constant of Men+. In contrast, protonation clearly dominates in Fe3+ montmorillonite because of the high hydrolysis constant of the Fe(III) ion and the adsorption isotherm obtained is not linear. The desorption isotherms show a hysteresis on all the Men+ montmorillonites examined for the lime interval of 3.5 weeks. It is suggested that only that fraction of the bound atrazine, which is adsorbed due to the relatively weak physical forces, can be desorbed. The larger the fraction of protonated atrazine molecules on the surface, the less is remobilized. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available