4.7 Article

Proapoptotic PEDF functional peptides inhibit prostate tumor growth-A mechanistic study

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 92, Issue 3, Pages 425-437

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2014.09.012

Keywords

PEDF; Epitope; Prostate carcinoma; Apoptosis; PPAR gamma

Funding

  1. National Nature Science Foundation of China [31101003, 81272338, 81272515, 81200706, 81370945]
  2. National Key Sci-Tech Special Project of China [2013ZX09102-053]
  3. Fundamental Research Funds for the Central Universities of China (Youth Program) [13ykpy06]
  4. Program for Doctoral Station in University [20120171110053]
  5. Key Project of Nature Science Foundation of Guangdong Province, China [10251008901000009]
  6. Key Sci-tech Research Project of Guangdong Province, China [2011B031200006]
  7. Guangdong Natural Science Fund [10151008901000007, S2012010009250, S2012040006986]
  8. Key Sci-tech Research Project of Guangzhou Municipality, China [2009Z1-E201, 2011Y1-00017-8, 12A52061519, 2014J4100162]
  9. 111 Project [B13037]

Ask authors/readers for more resources

PEDF inhibits tumor growth via anti-angiogenic activity; however, the direct effect of PEDF on prostate carcinoma and its functional epitope as well as the underlying mechanism regulating the pathway from extracellular receptors to nuclear transcription factors has not been fully elucidated. This study investigates the ability and mechanism by which the functional PEDF peptides PEDF34 and PEDF44 suppress tumor growth. The results showed that death receptor pathway was activated by PEDF34 through up-regulation of FasL and activation of caspase-8 in both xenograft tumor tissues and PC-3 cells. FasL knockdown by siRNA or JNK-p inhibition attenuated apoptosis induced by PEDF34. NF-kappa B and PPAR gamma are crucial transcription factors for FasL expression. PEDF34 up-regulated PPAR gamma but did not affect NF-kappa B. PEDF34-induced up-regulation of FasL was abolished by siRNA-mediated PPAR gamma knockdown or using PPAR gamma inhibitor GW9662, whereas inhibition of NF-kappa B by the inhibitor PDTC or by siRNA had no effect. Furthermore, activation of JNK is necessary for PEDF34-induced up-regulation of FasL. PEDF34 has stronger hydropathicity and more interactions with laminin receptor than PEDF44. Blocking the laminin receptor abolished the up-regulation of FasL and PPAR gamma by PEDF34. Moreover, PEDF34 uses a similar mechanism to induce apoptosis in both endothelial and cancer cells. This study provides evidence that PEDF34, not PEDF44, serves as the proapoptotic epitope and exerts proapoptotic activity in both cancer and endothelial cells through activation of the extrinsic death receptor pathway. The dual anti-tumor and anti-angiogenic activities of PEDF34 suggest that it may be a promising agent for the treatment of prostate cancer. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available