4.7 Article

Cell type-specific recycling of tetrahydrobiopterin by dihydrofolate reductase explains differential effects of 7,8-dihydrobiopterin on endothelial nitric oxide synthase uncoupling

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 90, Issue 3, Pages 246-253

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2014.05.010

Keywords

Endothelial nitric oxide synthase uncoupling; Tetrahydrobiopterin recycling; Dihydrofolate reductase; Porcine endothelial cells; Human endothelial cells

Funding

  1. Fonds zur Forderung der Wissenschaftlichen Forschung in Austria [P22289, P23135, P24005, P24946]
  2. Austrian Science Fund (FWF) [P 23135, P 22289] Funding Source: researchfish
  3. Austrian Science Fund (FWF) [P23135, P22289] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

(6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) availability regulates nitric oxide and superoxide formation by endothelial nitric oxide synthase (eNOS). At low BH4 or low BH4 to 7,8-dihydrobiopterin (BH2) ratios the enzyme becomes uncoupled and generates superoxide at the expense of NO. We studied the effects of exogenously added BH2 on intracellular BH4/BH2 ratios and eNOS activity in different types of endothelial cells. Incubation of porcine aortic endothelial cells with BH2 increased BH4/BH2 ratios from 8.4 (controls) and 0.5 (BH4-depleted cells) up to 20, demonstrating efficient reduction of BH2. Uncoupled eNOS activity observed in BH4-depleted cells was prevented by preincubation with BH2. Recycling of BH4 was much less efficient in human endothelial cells isolated from umbilical veins or derived from dermal microvessels (HMEC-1 cells), which exhibited eNOS uncoupling and low BH4/BH2 ratios under basal conditions and responded to exogenous BH2 with only moderate increases in BH4/BH2 ratios. The kinetics of dihydrofolate reductase-catalyzed BH4 recycling in endothelial cytosols showed that the apparent BH2 affinity of the enzyme was 50- to 300-fold higher in porcine than in human cell preparations. Thus, the differential regulation of eNOS uncoupling in different types of endothelial cells may be explained by striking differences in the apparent BH2 affinity of dihydrofolate reductase. (C) 2014 The Authors. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available