4.4 Article Proceedings Paper

Recent developments in atomic physics for the simulation of hot plasmas

Journal

PHYSICS OF PLASMAS
Volume 8, Issue 5, Pages 1817-1828

Publisher

AIP Publishing
DOI: 10.1063/1.1356739

Keywords

-

Ask authors/readers for more resources

Simulations of plasmas in which atoms are not completely stripped require atomic data, like average charge, ionization energies, and radiative properties (emissivity, opacity). These depend on populations of energy levels. The basic framework for obtaining the latter is the collisional radiative model (CRM), which bridges the gap between the low-density Corona Equilibrium (CE) and Local Thermodynamic Equilibrium (LTE). However, for nearly all but the simplest ions, the number of relevant bound states and cross sections is prohibitive. In this review we summarize some recent methods for handling complex ions: By focusing on an exact evaluation of relevant information and ignoring unobservable features, unresolved transition arrays (UTA) are obtained. The supertransition arrays (STA) model combines many UTAs in LTE. The STA code was recently extended to a non-LTE CRM called SCROLL. Using these models could improve radiation simulation in hot plasmas, even for simple spectra. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available