3.8 Article

A flexible encapsulated MEMS pressure sensor system for biomechanical applications

Journal

MICROSYSTEM TECHNOLOGIES
Volume 7, Issue 2, Pages 55-62

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s005420100092

Keywords

-

Ask authors/readers for more resources

The use of pressure sensors made of conductive polymers is common in biomechanical applications. Unfortunately, hysteresis, nonlinearity, non-repeatability and creep have a significant effect on the pressure readings when such conductive polymers are used. The objective of this paper is to explore the potential of a new flexible encapsulated micro electromechanical system (MEMS) pressure sensor system as an alternative for human interface pressure measurement. A prototype has been designed, fabricated, and characterized. Testing has shown that the proposed packaging approach shows very little degradation in the performance characteristics of the original MEMS pressure sensor. The much-needed characteristics of repeatability, linearity, low hysteresis, temperature independency are preserved. Thus the flexible encapsulated MEMS pressure sensor system is very promising and shows superiority over the commercially available conductive polymer film sensors for pressure measurement in biomechanical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available