4.7 Article

Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 28, Issue 9, Pages 1887-1890

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000GL012681

Keywords

-

Ask authors/readers for more resources

Solar wind measurements are used to predict the MeV electron radiation belt flux at the position of geostationary orbit. Using a model based on the standard radial diffusion equation, a prediction efficiency of 0.81 and a linear correlation of 0.90 were achieved for the years 1995-1996 for the logarithm of average daily flux. Model parameters based on the years 1995-1990 gave a prediction efficiency and a linear correlation for the years 1995-1999 of 0.59 and 0.80, respectively. The radial diffusion equation is solved after making the diffusion coefficient a function of the solar wind velocity and interplanetary magnetic field. The solar wind velocity is the most important parameter governing relativistic electron fluxes at geostationary orbit. The model also provides a physical explanation to several long standing mysteries of the variation of the MeV electrons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available