4.6 Article

Charge transport in manganites: Hopping conduction, the anomalous Hall effect, and universal scaling

Journal

PHYSICAL REVIEW B
Volume 63, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.63.184426

Keywords

-

Ask authors/readers for more resources

The low-temperature Hall resistivity rho (xy) of La(2/3)A(1/3)MnO(3) single crystals (where A stands for Ca, Pb, and Ca, or Sr) can be separated into ordinary and anomalous contributions, giving rise to ordinary and anomalous Hail effects, respectively. However, no such decomposition is possible near the Curie temperature which, in these systems, is close to metal-to-insulator transition. Rather. for all of these compounds and to a good approximation, the rho (xy) data at various temperatures and magnetic fields collapse (up to an overall scale), on to a single function of the reduced magnetization m = M/M-sat, the extremum of this function lying at m approximate to 0.4. A mechanism for the anomalous Hall effect in the inelastic hopping regime, which reproduces these scaling curves, is identified. This mechanism, which is an extension of Holsteins model for the ordinary Hall effect in the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads of Mn ions and spin-orbit interactions. We identify processes that lead to the anomalous Hall effect for localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to describe transport in manganites in terms of carrier hopping between states that are localized due to the combined effect of magnetic and nonmagnetic disorder. We attribute the qualitative variations in resistivity characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and conclude that both disorder-induced localization and self-trapping effects are important for transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available