4.7 Article

Y124 at the peripheral anionic site is important for the reactivation of nerve agent-inhibited acetylcholinesterase by H oximes

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 80, Issue 9, Pages 1427-1436

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2010.07.020

Keywords

Bovine acetylcholinesterase; Cyclosarin; VR; Oxime reactivation; Peripheral anionic site; Molecular modeling

Funding

  1. Defense Threat Reduction Agency

Ask authors/readers for more resources

The toxicity of organophosphorus (OP) nerve agents is manifested through irreversible inhibition of acetylcholinesterase (AChE) at the cholinergic synapses, which stops nerve signal transmission, resulting in a cholinergic crisis and eventually death of the poisoned person. Oxime compounds used in nerve agent antidote regimen reactivate nerve agent-inhibited AChE and halt the development of this cholinergic crisis. Due to diversity in structures of OP nerve agents, none of the currently available oximes is able to reactivate AChE inhibited by different nerve agents. To understand the mechanism for the differential activities of oximes toward AChE inhibited by diverse nerve agents in order to aid the design of new broad-spectrum AChE reactivators, we undertook site-directed mutagenesis and molecular modeling studies. Recombinant wild-type and mutant bovine (Bo) AChEs were inhibited by two bulky side-chain nerve agents, GF and VR, and used for conducting reactivation kinetics with five oximes. A homology model for wild-type Bo AChE was built using the recently published crystal structure of human AChE and used to generate models of 2-PAM and HI-6 bound to the active-sites of GF- and VR-inhibited Bo AChEs before nucleophilic attack. Results revealed that the peripheral anionic site (PAS) of AChE as a whole plays a critical role in the reactivation of nerve agent-inhibited AChE by all 4 bis-pyridinium oximes examined, but not by the mono-pyridinium oxime 2-PAM. Of all the residues at the PAS, Y124 appears to be critical for the enhanced reactivation potency of H oximes. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available