3.8 Article

Insulin-like growth factor binding proteins (IGFBPs) as potential physiological substrates for human kallikreins hK2 and hK3

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 268, Issue 10, Pages 2960-2968

Publisher

WILEY
DOI: 10.1046/j.1432-1327.2001.02185.x

Keywords

human kallikreins; IGF-binding proteins; insulin-like growth factors; proteolysis; prostate cancer

Ask authors/readers for more resources

Insulin-like growth factors (IGFs) are important growth regulators of both normal and malignant prostate cells. Their action is regulated by six insulin-like growth factor binding proteins (IGFBPs). The proteolytic cleavage of IGFBPs by various proteases decreases dramatically their affinity for their ligands and therefore enhances the bioavailability of IGFs. To elucidate the putative biological role of prostatic kallikreins hK2 and hK3 (prostate-specific antigen) in tumour progression, we analyzed the degradation of IGFBP-2, -3, -4 and -5 by these two tissue kallikreins. We found that hK3, already characterized as an IGFBP-3 degrading protease, cleaved IGFBP-4 but not IGFBP-2 and -5, whereas hK2 cleaved all of the IGFBPs much more effectively, and at concentrations far lower than those reported for other IGFBP-degrading proteases. The proteolytic patterns after cleavage of IGFBPs by hK2 and hK3 were similar and were not modified in the presence of IGF-I. Heparin, but not other glycosaminoglycans, enhanced dramatically the ability of hK3 but not hK2 to degrade IGFBP-3 and IGFBP-4. More importantly, the IGFBP fragments generated by hK2 and hK3 had no IGF-binding capacity, as assessed by Western ligand blotting. Our results suggest that the prostatic kallikreins hK2 and hK3 may influence specifically the tumoral growth of prostate cells through the degradation of IGFBPs, to increase IGF bioavailability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available