4.7 Article

Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 21, Issue 5, Pages 739-745

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.ATV.21.5.739

Keywords

reactive oxygen species; NAD(P)H oxidase; coronary remodeling; adventitial fibroblast

Funding

  1. NHLBI NIH HHS [HL-44150, HL-60672] Funding Source: Medline

Ask authors/readers for more resources

Reactive oxygen species (ROS), produced by cellular constituents of the arterial wall, provide a signaling mechanism involved in vascular remodeling. Because adventitial fibroblasts are actively involved in coronary remodeling, we examined whether the changes in the redox state affect their phenotypic characteristics. To this end. superoxide anion production and NAD(P)H oxidase activity were measured in porcine coronary arteries in vivo, and the effect of ROS generation on adventitial fibroblast proliferation was examined in vitro. Superoxide production (SOD- and Tiron-inhibitable nitro blue tetrazolium [NBT] reduction) increased significantly within 24 hours after balloon-induced injury, with the product of NBT reduction present predominantly in adventitial fibroblasts. These changes were NAD(P)H oxidase-dependent, because diphenyleneiodonium (DPI) abolished superoxide generation (P<0.001). Furthermore, the injury-induced superoxide production was associated with augmented NAD(P)H oxidase activity and upregulation of p47(phox) and p67(phox) in adventitial fibroblasts (immunohistochemistry). Serum stimulation of isolated adventitial fibroblasts produced time-dependent increases in ROS production (peak 3 to 6 hours). The inhibition of ROS generation with NAD(P)H oxidase inhibitor (DPI) or the removal of ROS with antioxidants (Tiron, catalase) abrogated proliferation of adventitial fibroblasts. These results indicate that vascular NAD(P)H oxidase plays a central role in the upregulation of oxidative stress after coronary injury, providing pivotal growth signals for coronary fibroblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available