4.3 Article

Evolution rates of genes on leading and lagging DNA strands

Journal

JOURNAL OF MOLECULAR EVOLUTION
Volume 52, Issue 5, Pages 426-433

Publisher

SPRINGER
DOI: 10.1007/s002390010172

Keywords

orhtologs; DNA asymmetry; mutation pressure; evolution rate

Ask authors/readers for more resources

One of the main causes of bacterial chromosome asymmetry is replication-associated mutational pressure. Different rates of nucleotide substitution accumulation on leading and lagging strands implicate qualitative and quantitative differences in the accumulation of mutations in protein coding sequences lying on different DNA strands. We show that the divergence rate of orthologs situated on leading strands is lower than the divergence rate of those situated on lagging strands. The ratio of the mutation accumulation rate for sequences lying on lagging strands to that of sequences lying on leading strands is rather stable and time-independent. The divergence race of sequences which changed their positions, with respect to the direction of replication fork movement, is not stable-sequences which have recently changed their positions are the most prone to mutation accumulation. This effect may influence estimations of evolutionary distances between species and the topology of phylogenetic trees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available