4.5 Article

Eukaryotic initiation factor 5A dephosphorylation is required for translational arrest in stationary phase cells

Journal

BIOCHEMICAL JOURNAL
Volume 451, Issue -, Pages 257-267

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20121553

Keywords

eukaryotic initiation factor 5A (eIF5A); protein phosphorylation; translation initiation factor; translation regulation; Trypanosoma cruzi

Funding

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  3. Financiadora de Estudos e Projetos (FINEP)
  4. Instituto Nacional de Ciencia e Tecnologia de Vacinas do Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil

Ask authors/readers for more resources

The protein known as eIF5A (eukaryotic initiation factor 5A) has an elusive role in translation. It has a unique and essential hypusine modification at a conserved lysine residue in most eukaryotes. In addition, this protein is modified by phosphorylation with unknown functions. In the present study we show that a phosphorylated state of eIF5A predominates in exponentially growing Trypanosoma cruzi cells, and extensive dephosphorylation occurs in cells in stationary phase. Phosphorylation occurs mainly at See, as shown in yeast eIF5A. In addition, a novel phosphorylation site was identified at Tyr(21). In exponential cells, T. cruzi eIF5A is partially associated with polysomes, compatible with a proposed function as an elongation factor, and becomes relatively enriched in polysomal fractions in stationary phase. Overexpression of the wild-type eIF5A, or eIF5A with See replaced by an aspartate residue, but not by alanine, increases the rate of cell proliferation and protein synthesis. However, the presence of an aspartate residue instead of See is toxic for cells reaching the stationary phase, which show a less-pronounced protein synthesis arrest and a decreased amount of eIF5A in dense fractions of sucrose gradients. We conclude that eIF5A phosphorylation and dephosphorylation cycles regulate translation according to the growth conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available