4.5 Article

Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1 (DNA methyltransferase 1)-independent manner

Journal

BIOCHEMICAL JOURNAL
Volume 449, Issue -, Pages 459-468

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20121360

Keywords

chromatin; epigenetics; FAD-dependent oxidase; histone modification; transcriptional repression

Funding

  1. National Institutes of Health [CA51085, CA58184, CA98454, CA149095]
  2. Samuel Waxman Cancer Research Foundation

Ask authors/readers for more resources

Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys(4)) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD1 on these proteins is necessary for their stabilization. To examine the role of LSD1 we generated LSD1 heterozygous (LSD1(+/-)) and homozygous (LSD1(-/-)) knockouts in the human colorectal cancer cell line HCT116. The deletion of LSD1 led to a reduced cell proliferation both in vitro and in vivo. Surprisingly, the knockout of LSD1 in HCT116 cells did not result in global increases in its histone substrate H3K4me2 (dimethyl-H3K4) or changes in the stability or function of p53 or DNMT1. However, there was a significant difference in gene expression between cells containing LSD1 and those null for LSD1. The results of the present study suggested that LSD1 is critical in the regulation of cell proliferation, but also indicated that LSD1 is not an absolute requirement for the stabilization of either p53 or DNMT1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available