4.7 Article

Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation, swelling or diffusion?

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0939-6411(01)00130-8

Keywords

ABA triblock copolymers; poly(lactide-co-glycolide); erosion mechanism; degradation; microspheres; rod; film

Ask authors/readers for more resources

Erosion of biodegradable parenteral delivery systems (PDS) based on ABA copolymers consisting of poly(L-lactide-co-glycolide) (PLGA) A-blocks attached to polyethylene oxide (PEO) B-blocks, or PLGA is important for the release of macromolecular drugs. The degradation behavior of four types of PDS, namely extruded rods, tablets, films and microspheres, was studied with respect to molecular weight, mass, polymer composition and shape and microstructure of the PDS. For each device the onset time of bulk erosion (t(on)) and the apparent rate of mass loss (k(app)) were calculated. In the case of PLGA, the t(on) was 16.2 days for microspheres, 19.2 days for films and 30.1 days for cylindrical implants and tablets. The k(app) was 0.04 days(-1) for microspheres, 0.09 days(-1) for frlms, 0.11 days(-)1 for implants and 0.10 days(-1) for tablets. The degradation rates were in the same range irrespective of the geometry and the micrographs of eroding PDS demonstrated pore formation; therefore, a complex pore diffusion mechanism seems to control the erosion of PLGA devices. In contrast, PDS based on ABA copolymers showed swelling, followed by a parallel process of molecular weight degradation and polymer erosion, independent of the geometry. The contact angles of ABA films increased either with decreasing PEO content or with increasing chain length of the PEO B-blocks. In summary, the insertion of a hydrophilic B-block leads to an erosion controlled by degradation of ABA copolymers, whereas for PLGA a complex pore diffusion of degradation products controls the rate of bulk erosion. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available