4.0 Article

Host spatial heterogeneity and the spread of vector-borne infection

Journal

THEORETICAL POPULATION BIOLOGY
Volume 59, Issue 3, Pages 185-206

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/tpbi.2000.1517

Keywords

-

Ask authors/readers for more resources

We analyze how spatial heterogeneity in host density affects the advance of vector-borne disease. Infection requires vector infestation. The vector spreads only between hosts occupying the same neighborhood, and the number of hosts varies randomly among neighborhoods. Simulation of a spatially detailed model shows that increasing heterogeneity in host abundance reduces pathogen prevalence. Clumping of hosts can limit the advance of the vector, which inhibits the spread of infection indirectly. Clumping can also increase the chance that the pathogen and vector become physically separated during the initial phase of the epidemic process. The latter limitation on the pathogen's spread, in our simulations, is restricted to small interaction neighborhoods: A mean-field model, which does not maintain spatial correlations between sites, approximates simulation results when hosts are arrayed uniformly, but overestimates infection prevalence when hosts are aggregated. A pair approximation, which includes some of the simulation model's spatial correlations, better describes the vector infestation frequencies across host spatial dispersions. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available