4.8 Article

New insight on the origin of the unusual acidity of Meldrum's acid from ab initio and combined QM/MM simulation study

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 123, Issue 17, Pages 3974-3979

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja001369r

Keywords

-

Ask authors/readers for more resources

Ab initio molecular orbital and combined QM/MM Monte Carlo simulations have been carried out to investigate the origin of the unusually high acidity of Meldrum's acid. Traditionally, the high acidity of Meldrum's acid relative to that of methyl malonate has been attributed to an additive effect due to the presence of two E esters in the dilactone system. However, the present study reveals that there is significant nonadditive effect that also makes major contributions. This results from preferential stabilization of the enolate anion over that of Meldrum's acid due to anomeric stereoelectronic interactions. To investigate solvent effects on the acidity in aqueous solution, the relative acidities of Z and E conformers of methyl acetate have been determined in combined ab initio QM/MM simulations. There is significant solvent effect on the conformational equilibria for both the neutral ester and its enolate anion in water, leading to stabilization of the E stereoisomer. However, the computed solvent effect of 4.4 kcal/mol in favor of the E isomer of methyl acetate is largely offset by the favorable solvation of 3.4 kcal/mol for the E conformer of the enolate anion. This leads to an enhance;l acidity of 3.4 kcal/mol for the (E)-methyl acetate in water over the Z conformer. In Meldrum's acid, it is the preferential stabilization of the enolate anion due to anomeric effects coupled with the intrinsically higher acidity of the E conformation of ester that is responsible for its high acidity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available