4.5 Article

What does the commonly used DCF test for oxidative stress really show?

Journal

BIOCHEMICAL JOURNAL
Volume 428, Issue -, Pages 183-190

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20100208

Keywords

age-related macular degeneration (AMD); 2 ',7 '-dichlorofluorescein (DCF); lysosome; oxidative stress; reactive oxygen species (ROS); transition metal

Funding

  1. Crown Princess Margareta's Foundation
  2. Linkoping University Hospital Research Fund

Ask authors/readers for more resources

H2DCF-DA (dihydrodichlorofluorescein cliacetate) is widely used to evaluate 'cellular oxidative stress'. After passing through the plasma membrane, this lipophilic and non-fluorescent compound is de-esterified to a hydrophilic alcohol [H2DCF (dihydrodichlorofluorescein)1 that may be oxidized to fluorescent DCF (2',7'-dichlorofluorescein) by a process usually considered to involve ROS (reactive oxygen species). It is, however, not always recognized that, being a hydrophilic molecule. H2DCF does not cross membranes, except for the outer fenestrated mitochondria' ones. It is also not generally realized that oxidation of H2DCF is dependent either on Fenton-type reactions or on unspecific enzymatic oxidation by cytochrome c, for neither superoxide, nor H2O2, directly oxidizes H2DCF. Consequently, oxidation of H2DCF requires the presence of either cytochrome c or of both redox-active transition metals and H2O2. Redox-active metals exist mainly within lysosomes, whereas cytochrome c resides bound to the outer side of the inner mitochondria! membrane. Following exposure to H2DCF-DA, weak mitochondrial fluorescence was found in both the oxidation-resistant ARPE-19 cells and the much more sensitive J774 cells. This fluorescence was only marginally enhanced following short exposure to H2O2, showing that by itself it is unable to oxidize H2DCF. Cells that were either exposed to the lysosomotropic detergent MSDH (O-methylserine dodecylamide hydrochloride), exposed to prolonged oxidative stress, or spontaneously apoptotic showed lysosomal permeabilization and strong DCF-induced fluorescence. The results suggest that DCF-dependent fluorescence largely reflects relocation to the cytosol of lysosomal iron and/or mitochondrial cytochrome c.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available