4.6 Article

Overexpression of UCP-3 in skeletal muscle of mice results in increased expression of mitochondrial thioesterase mRNA

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/bbrc.2001.4848

Keywords

UCP-3; transgenic; mitochondrial thioesterase; lipoprotein lipase; fatty acid transporters; mRNA expression; skeletal muscle

Ask authors/readers for more resources

Mice overexpressing human UCP-3 in skeletal muscle (UCP-3tg) are lean despite overeating, have increased metabolic rate, and their skeletal muscle mitochondria show increased proton conductance. The true function of UCP-3 however, has yet to be determined. It is assumed that UCP-3tg mice have increased fatty acid beta -oxidation to fuel their increased metabolic rate. In this study we have quantified skeletal muscle mRNA levels of a number of genes involved in fatty acid metabolism. mRNA levels of uncoupling protein-2, carnitine palmitoyl transferase-1 beta and fatty acid binding proteins, and transporters were unchanged when compared to wild-type mice. Lipoprotein lipase mRNA was slightly, but significantly, increased by 50%. The most notable change in gene expression was a threefold increase in mitochondrial thioesterase (MTE-1) expression. In the face of a chronic increase in mitochondrial uncoupling these changes suggest that increased flux of fatty acids through the beta -oxidation pathway does not necessarily require marked changes in expression of genes involved in fatty acid metabolism. The large increase in MTE-1 both confirms the importance of this gene in situations where mitochondrial beta -oxidation is increased and supports the hypothesis that UCP-3 exports fatty acids generated by MTE-1 in the mitochondrion. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available