4.6 Article

A Conserved Glutamate Residue in the C-terminal Deaminase Domain of Pentatricopeptide Repeat Proteins Is Required for RNA Editing Activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 16, Pages 10136-10142

Publisher

ELSEVIER
DOI: 10.1074/jbc.M114.631630

Keywords

Cytidine Deaminase; Metalloenzyme; RNA-binding Protein; RNA Editing; RNA Metabolism; Chloroplasts; Zinc; DYW Deaminase Domain

Funding

  1. National Science Foundation [MCB-0929423, DGE-1321846]

Ask authors/readers for more resources

Background: Pentatricopeptide repeat (PPR) proteins that are required for RNA editing frequently include a C-terminal DYW deaminase domain. Results: Mutagenesis of a glutamate residue in the conserved deaminase HXE motif results in loss of editing activity. Conclusion: The glutamate residue is required for editing. Significance: The DYW deaminase domain of PPR proteins has the molecular characteristics of a deaminase. Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins include an RNA binding domain that provides site specificity. In addition, many PPR proteins include a C-terminal DYW deaminase domain with characteristic zinc binding motifs (CXXC, HXE) and has recently been shown to bind zinc ions. The glutamate residue of the HXE motif is catalytically required in the reaction catalyzed by cytidine deaminase. In this work, we examine the activity of the DYW deaminase domain through truncation or mutagenesis of the HXE motif. OTP84 is required for editing three chloroplast sites, and transgenes expressing OTP84 with C-terminal truncations were capable of editing only one of the three cognate sites at high efficiency. These results suggest that the deaminase domain of OTP84 is required for editing two of the sites, but another deaminase is able to supply the deamination activity for the third site. OTP84 and CREF7 transgenes were mutagenized to replace the glutamate residue of the HXE motif, and transgenic plants expressing OTP84-E824A and CREF7-E554A were unable to efficiently edit the cognate editing sites for these genes. In addition, plants expressing CREF7-E554A exhibited substantially reduced capacity to edit a non-cognate site, rpoA C200. These results indicate that the DYW deaminase domains of PPR proteins are involved in editing their cognate editing sites, and in some cases may participate in editing additional sites in the chloroplast.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available