3.8 Article

Rat olfactory bulb and epithelium UDP-glucuronosyltransferase 2A1 (UGT2A1) expression: in situ mRNA localization and quantitative analysis

Journal

MOLECULAR BRAIN RESEARCH
Volume 90, Issue 1, Pages 83-92

Publisher

ELSEVIER
DOI: 10.1016/S0169-328X(01)00080-8

Keywords

UDP; glucuronosyltransferase; olfactory epithelium; olfactory bulb; in situ hybridization; neurotoxicity; rat; mouse

Categories

Ask authors/readers for more resources

UDP-glucuronosyltransferases (UGTs) form a multigenic family of enzymes involved in the biotransformation and elimination of numerous endo- and xenobiotic compounds. Beside the diverse UGT isoforms present in the liver as well as in other tissues, the UGT2A1 isoform, also called olfactory UGT, was initially thought to be expressed in the nasal epithelium only. In this work, we demonstrate the UGT2A1 mRNA expression in the olfactory bulb, using in situ hybridization and quantitative reverse transcription-polymerase chain reaction (RT-PCR) techniques. Within the epithelium, UGT2A1 mRNA is mainly found in the sustentacular cells and to a lesser extent in Bowman's gland cells. Moreover, in situ hybrization staining reveals UGT2A1 mRNA expression in the olfactory sensory neuron nuclei. Neuronal localization of UGT2A1 mRNA within the olfactory bulb is mainly found in the deeper granular cells. The development of the quantitative multistandard RT-PCR method firstly required characterization of the mouse Ugt2A1 cDNA by rapid amplification of cDNA ends (RACE)-PCR. UGT2A1 mRNA levels appear quantitatively six-fold lower in the olfactory bulb than in the epithelium, in both the rat and mouse. The expression of UGT2A1 in the olfactory bulb, which directly connects the nasal epithelium to the brain, emphasizes the potential role of this enzyme in the protection of the brain against airborne hazardous chemicals. (C) 2001 Elsevier Science BN. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available