4.5 Article

Calsenilin and CALP interact with the cytoplasmic tail of UDP-Gal:: GA2/GM2/GD2 β-1,3-galactosyltransferase

Journal

BIOCHEMICAL JOURNAL
Volume 412, Issue -, Pages 19-26

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20071725

Keywords

calsenilin; calsenilin glycosyltransferase interaction; galactosyltransferase; glycosyltransferase; Golgi complex

Funding

  1. Howard Hughes Medical Institute Funding Source: Medline

Ask authors/readers for more resources

GalT2 (UDP-Gal:GA2/GM2/GD2 beta-1,3-galactosyltransferase) is a Golgi-resident type 11 membrane protein that participates in the synthesis of glycosphingolipids. The molecular determinants for traffic and localization of this and other glycosyltransferases are still poorly characterized. Considering the possibility that interactions with other proteins may influence these processes, in the present study we carried out a yeast two-hybrid screening using elements of the N-terminal domain of GalT2 as bait. In this screening, we identified calsenilin and its close homologue CALP (calsenilin-like protein), both members of the recoverin-NCS (neuronal calcium sensor) family of calcium-binding proteins. In vitro, GalT2 binds to immobilized recombinant CALP, and CALP binds to immobilized peptides with the GalT2 cytoplasmic tail sequence. GalT2 and calsenilin interact physically when co-expressed in CHO (Chinese-hamster ovary)-K1 cells. The expression of CALP or calsenilin affect Golgi localization of GalT2, and of two other glycosyltransferases, SialT2 (CMP-NcuAc:GM3 sialyltransferase) and GalNAcT (UDP-GalNAc:lactosylceramide/GM3/GD3 beta 1-4 N-acetylgalactosaminyltransferase), by redistributing them from the Golgi to the ER (endoplasmic reticulum), whereas the localization of the VSVG (G-protein of the vesicular stomatitis virus) or the Golgin GM130 was essentially unaffected. Conversely, the expression of GalT2 affects the localization of calsenilin and CALP by shifting a fraction of the molecules from being mostly diffuse in the cytosol, to clustered structures in the perinuclear region. These combined in vivo and in vitro results suggest that CALP and calsenilin are involved in the trafficking of Golgi glycosyltransferases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available