4.7 Article

Work-hardening/softening behaviour of BCC polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an if steel during two-stage strain paths

Journal

ACTA MATERIALIA
Volume 49, Issue 9, Pages 1607-1619

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1359-6454(01)00066-0

Keywords

dislocations; microstructure; texture; constitutive equations; stress-strain behaviour

Ask authors/readers for more resources

For many years polycrystalline deformation models have been used as a physical approach to predict the anisotropic mechanical behaviour of materials during deformation, e.g. the r-values and yield loci. The crystallographic texture was then considered to be the main contributor to the overall anisotropy. However, recent studies have shown that the intragranular microstructural features influence strongly the anisotropic behaviour of b.c.c. polycrystals, as revealed by strain-path change tests (e.g. cross effect, Bausch-inger effect). This paper addresses a method of incorporating dislocation ensembles in the crystal plasticity constitutive framework, while accounting for their evolution during changing strain paths. Kinetic equations are formulated for the evolution of spatially inhomogeneous distributions of dislocations represented by three dislocation densities. This microstructural model is incorporated into a full-constraints Taylor model. The resulting model achieves for each crystallite a coupled calculation of slip activity and dislocation structure evolution, as a function of the crystallite orientation. Texture evolution and macroscopic flow stress are obtained as well. It is shown that this intragranular-microstructure based Taylor model is capable of predicting quantitatively the complex features displayed by stress-strain curves during various two-stage strain paths. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available