4.7 Article

The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams

Journal

ACTA MATERIALIA
Volume 49, Issue 9, Pages 1677-1686

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1359-6454(01)00072-6

Keywords

microstructure; foams; mechanical properties

Ask authors/readers for more resources

This study primarily concerns the role of cell wall microstructure in influencing the mechanical behaviour of metallic foams. Three closed-cell foams have been examined, having rather similar relative densities and cell structures but significant differences in cell wall microstructure. It is concluded that these differences can substantially affect the micro-mechanisms of deformation and failure under different types of loading and can also have an influence on the macroscopic mechanical response. Cell wall ductility and toughness are impaired by high volume fractions of coarse eutectic, fine oxide films and large brittle particles, ah of which were present in one or more of the foams studied. This impairment can lead to extensive brittle fracture of cell walls, with little energy absorption, even under nominally compressive loading conditions. The influence of cell wall ductility tends to become more significant when the loading state is such that local tensile stresses are generated. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available