4.4 Article

The DNA sequence of the simian varicella virus genome

Journal

VIROLOGY
Volume 284, Issue 1, Pages 123-130

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/viro.2001.0912

Keywords

simian varicella virus; varicella-zoster virus; nonhuman primate herpesvirus; DNA sequence

Categories

Funding

  1. NCRR NIH HHS [RR11713] Funding Source: Medline
  2. NIAID NIH HHS [AI37571] Funding Source: Medline
  3. NIA NIH HHS [AG06127] Funding Source: Medline
  4. NINDS NIH HHS [NS 32623] Funding Source: Medline

Ask authors/readers for more resources

In nonhuman primates, simian varicella virus (SVV) causes a natural disease which is clinically similar to human varicella-zoster virus (VZV) infections. The SVV and VZV genomes are similar in size and structure and share extensive DNA homology. This report presents the complete DNA sequence of the SVV genome. SVV DNA is 124,138 bp in size, 746 bp shorter than VZV DNA, and 40.4% G + C. The viral genome includes a 104,104-bp unique long component bracketed by 8-bp inverted repeat sequences and a short component composed of a 4904-bp unique short region bracketed by 7557-bp inverted repeat sequences. A total of 69 distinct SVV open reading frames (ORFs) were identified, including three that are duplicated within the inverted repeats of the short component. Each of the SVV ORFs shares extensive homology to a corresponding VZV gene. The only major difference between SVV and VZV DNA occurs at the leftward terminus. SVV lacks a VZV ORF 2 homolog, In addition, SVV encodes an 882-bp ORF A that is absent in VN, but has homology to the SVV and VZV ORF 4. The results of this study confirm the relatedness of SVV and VZV and provide further support for simian varicella as a model to investigate VN pathogenesis and latency. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available