4.6 Article

Two-dimensional distributions and column densities of gaseous molecules in protoplanetary disks - II. Deuterated species and UV shielding by ambient clouds

Journal

ASTRONOMY & ASTROPHYSICS
Volume 371, Issue 3, Pages 1107-1117

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20010416

Keywords

ISM : molecules; stars : T Tauri; circumstellar matter; protoplanetary disk

Ask authors/readers for more resources

We have investigated the two-dimensional (R, Z) distribution of deuterated molecular species in circumstellar disks around young stellar objects. The abundance ratios between singly deuterated and normal molecules (D/H ratios) in disks evolve in a similar way as in molecular clouds. Fractionation is caused by rapid exchange reactions that are exothermic because of energy differences between deuterated and normal species. In the midplane region, where molecules are heavily depleted onto grain surfaces, the D/H ratios of gaseous molecules are higher than at larger heights. The D/H ratios for the vertical column densities of NH3, H2O, and HCO+ are sensitive to the temperature, and decrease significantly with decreasing radial distance for R less than or similar to 300 AU. The analogous D/H ratios for CH4 and H2CO, on the other hand, are not very sensitive to the temperature in the range (T = 10-50 K) we are concerned with, and do not decrease with decreasing R at R greater than or equal to 50 AU. The D/H column-density ratios also depend on disk mass. In a disk with a larger mass, the ratios of deuterated species to normal species are higher, because of heavier depletion of molecules onto grains. In the second part of the paper, we report molecular column densities for disks embedded in ambient cloud gas. Our results suggest that CN and HCO+ can be tracers of gaseous disks, especially if the central object is a strong X-ray source. Our results also suggest that the radial distributions of CN, C2H, HCN, and H2CO may vary among disks depending on the X-ray luminosity of the central star.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available