4.6 Article

Energy recovery from wastewater microalgae through anaerobic digestion process: Methane potential, continuous reactor operation and modelling aspects

Journal

BIOCHEMICAL ENGINEERING JOURNAL
Volume 139, Issue -, Pages 1-7

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bej.2018.08.004

Keywords

Wastewater microalgae; Piggery slurry; Anaerobic digestion; Biogas; Methane; Modelling

Funding

  1. ForskEL [12197]

Ask authors/readers for more resources

A mixture of piggery slurry and algal species (mainly composed of Nannochloropsis limnetica), grown in municipal wastewater, were used as substrates for biogas production. Mono- and co-digestion experiments were performed at batch and continuous reactor operation. The mono-digestion of wastewater microalgae led to the highest methane yield (408 +/- 34 N mL/gVS). However, for manure-based biogas plants, a 60:40 v/v piggery slurry to wastewater microalgae ratio in terms of organic matter was identified as the most efficient mixture in batch assays (355 +/- 27 N mL/gVS). The advantage of co-digestion was also evidenced under continuous reactor operation, which had markedly higher biogas production (23%, p < 0.05) compared to the mono-digestion of livestock manure. Moreover, it was demonstrated that the co-digestion process resulted in a more robust process as indicated by lower accumulation of acetate (i.e. presented during mono-digestion of piggery slurry) and propionate (i.e. recorded during mono-digestion of wastewater microalgae). The experimental data were compared with dynamic modelling (BioModel). A new set of biodegradability parameters was estimated and employed to improve the simulations of mono-digestion scenarios. Subsequently, the co-digestion scenario was used for model validation. Results obtained from simulations showed that the co-digestion can lead to relatively high methane productivity and prevent process instabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available