4.6 Article

Expression of a Catalytically Inactive Mutant Form of Glutathione Peroxidase 4 (Gpx4) Confers a Dominant-negative Effect in Male Fertility

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 23, Pages 14668-14678

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.656363

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [CO 291/2-3, CO 291/5-1]
  2. Human Frontier Science Programme (HFSP) [RGP13/2014]
  3. Humboldt Research Fellowship
  4. Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain (SMHB)
  5. German Federal Ministry of Education and Research (BMBF) through the Integrated Network Alcoholism (Alcohol Addiction: systems-oriented approach), under e:Med Programme [01ZX1311G]

Ask authors/readers for more resources

The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with a targeted mutation of the active site selenocysteine of Gpx4 (Gpx4_U46S). Mice homozygous for Gpx4_U46S died at the same embryonic stage (E7.5) as Gpx4(-/-) embryos as expected. Surprisingly, male mice heterozygous for Gpx4_U46S presented subfertility. Subfertility was manifested in a reduced number of litters from heterozygous breeding and an impairment of spermatozoa to fertilize oocytes in vitro. Morphologically, sperm isolated from heterozygous Gpx4_U46S mice revealed many structural abnormalities particularly in the spermatozoa midpiece due to improper oxidation and polymerization of sperm capsular proteins and malformation of the mitochondrial capsule surrounding and stabilizing sperm mitochondria. These findings are reminiscent of sperm isolated from selenium-deprived rodents or from mice specifically lacking mitochondrial Gpx4. Due to a strongly facilitated incorporation of Ser in the polypeptide chain as compared with selenocysteine at the UGA codon, expression of the catalytically inactive Gpx4_U46S was found to be strongly increased. Because the stability of the mitochondrial capsule of mature spermatozoa depends on the moonlighting function of Gpx4 both as an enzyme oxidizing capsular protein thiols and as a structural protein, tightly controlled expression of functional Gpx4 emerges as a key for full male fertility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available