4.6 Article

La doped Ba1-xSrxTiO3 thin films for tunable device applications

Journal

JOURNAL OF APPLIED PHYSICS
Volume 89, Issue 11, Pages 6336-6340

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1366656

Keywords

-

Ask authors/readers for more resources

Pure and La doped Ba0.6Sr0.4TiO3 thin (BST) films were fabricated via the metalorganic solution deposition technique using carboxylate-alkoxide precursors on Pt-Si substrates. The La doping concentration, from 0 to 10 mol %, was found to have a strong influence on the 750 degreesC postdeposition annealed films material properties. All films possessed a nontextured polycrystalline microstructure with no evidence of secondary phase formation. The pure and 1 mol % La doped films exhibited a uniform microstructure suggestive of a fully developed film at this annealing temperature. Improved dielectric and insulating properties were achieved for the 1 mol % La doped BST thin films with respect to that of undoped BST films. The 1 mol % La doped BST film exhibited a lower dielectric constant, (283 vs 450) and enhanced resistivity (31.4 x 10(13) Ohm cm vs 0.04 x 10(13) Ohm cm) with respect to that of undoped BST films. The loss tangent and tunability (at 100 kHz) of the 1 mol % La doped BST films were 0.019% and 21% (at E = 300 kV/cm), respectively. Films doped at concentrations between 5 and 10 mol % possessed under developed microstructures suggesting that higher annealing temperatures and/or longer annealing times are required. The single phase structure of the 5-10 mol % La doped BST films, combined with the beneficial influence of the 1 mol % La doping on the BST films dielectric and insulating properties, suggest potential for further enhancement of the films material properties after optimization of the thermal treatments for the 5-10 mol % La doped BST thin films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available