4.3 Article

An exoskeletal robot for human elbow motion support - sensor fusion, adaptation, and control

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/3477.931520

Keywords

electromyogram; exoskeletal robots; fuzzy-neuro control; human motion support; impedance control; sensor fusion

Ask authors/readers for more resources

In order to help everyday life of physically weak people, we are developing exoskeletal robots for human (especially for physically weak people) motion support. In this paper, we propose a one degree-of-freedom (1 DOF) exoskeletal robot and its control system to support the human elbow motion. The proposed controller controls the angular position and impedance of the exoskeletal robot system based on biological signals that reflect the human subject's intention, The skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been fused and used as input information of the controller. In order to make the robot flexible enough to deal with vague biological signal such as EMG, fuzzy neuro control has been applied to the controller. The experimental results show the effectiveness of the proposed exoskeletal robot system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available