4.4 Article

Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy

Journal

Publisher

Optica Publishing Group
DOI: 10.1364/JOSAB.18.000872

Keywords

-

Categories

Ask authors/readers for more resources

We present an experimental study of the control of ultrafast semiconductor nonlinearities by adaptive feedback optical pulse shaping. In the feedback loop, an evolutionary algorithm directs the modulation of the spectral phase of 20-fs laser pulses. In this way, control is achieved over the broadband semiconductor continuum nonlinearity as measured in differential transmission experiments. Design guidelines are given for the implementation of the evolutionary algorithm. Our results demonstrate that a feedback loop with a carefully designed algorithm can serve as a new, sensitive tool in ultrafast semiconductor spectroscopy. Moreover, an optimized feedback loop allows for the substantial enhancement of ultrafast semiconductor nonlinearities. (C) 2001 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available