4.6 Article

Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2014.07.051

Keywords

Invariant chain; CD74; B cell maturation; Common variable immune deficiency; Intramembrane proteolysis; Signal-peptide-peptidase-like protease

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 877]
  2. Centre of Excellence Inflammation at Interfaces
  3. National Institutes of Health [RO1MH074090]

Ask authors/readers for more resources

The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalyzed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a(-/-) mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a(-/-) mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available