4.3 Article

Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na+/Pi cotransporter

Journal

JOURNAL OF GENERAL PHYSIOLOGY
Volume 117, Issue 6, Pages 533-546

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.117.6.533

Keywords

cysteine scanning; electrophysiology; mutagenesis; phosphate transport; secondary structure

Categories

Ask authors/readers for more resources

The transport function of the rat type IIa Na+/P-j cotransporter is inhibited after binding the cysteine modifying reagent 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) to a cysteine residue substituted for a serine at position 460 (S460C) in the predicted third extracellular loop. This suggests that Ser-460 lies in a functionally important region of the protein. To establish a structure-function profile for the regions that flank Ser-460, the substituted cysteine accessibility method was employed. 18 mutants were constructed in which selected amino acids from Arg-437 through Leu-465 were substituted one by one for a cysteine. Mutants were expressed in Xenopus oocytes and transport function (cotransport and slippage) and kinetics were assayed by electrophysiology with or without prior treatment with cysteine modifying (methanethiasulfonate, MTS) reagents. Except for mutant 1447C, mutants with cysteines at sites from Arg-437 through Thr-449, as well as Pro-461, were inactive. Cotransport function of mutants with Cys substitutions at sites Arg-462 through Leu-465 showed low sensitivity to MTS reagents. The preceding mutants (Cys substitution at Thr-451 to Ser-460) showed a periodic accessibility pattern that would be expected for an a-helix motif. Apart from loss of transport function, exposure of mutants A453C and A455C to MTSEA or 2-(triethylammonium) ethyl MTS bromide (MTSET) increased the uncoupled slippage current, which implicated the mutated sites in the leak pathway Mutants from Ala-453 through Ala-459 showed less PPI dependency, but generally stronger voltage dependency compared with the wild type, whereas those flanking this group were more sensitive to pH and showed weaker voltage dependence of cotransport mode kinetics. Our data indicate that parts of the third extracellular loop are involved in the translocation of the fully loaded carrier and show a membrane-associated alpha -helical structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available