4.1 Article Proceedings Paper

Porphyromonas gingivalis lipopolysaccharide:: an unusual pattern recognition receptor ligand for the innate host defense system

Journal

ACTA ODONTOLOGICA SCANDINAVICA
Volume 59, Issue 3, Pages 131-138

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/000163501750266710

Keywords

inflammation; innate defense; lipopolysaccharide; Porphyromonas gingivalis

Ask authors/readers for more resources

Lipopolysaccharide (LPS) is a key inflammatory mediator. Due to its ability to potently activate host inflammatory and innate defense responses, it has been proposed to function as an important molecule that alerts the host of potential bacterial infection. However, although highly conserved, LPS contains important structural differences among different bacterial species that can significantly alter host responses. For example, LPS obtained from Porphyromonas gingivalis: an etiologic agent for periodontitis; causes a highly unusual host innate host response. II is an agonist for human monocytes and an antagonist for human endothelial cells. Correspondingly, although it activates p38 MAP kinase in human monocytes, P. gingivalis LPS does not activate p38 nor ERK MAP kinase in endothelial cells. In Fact, P. gingivalis LPS is an effective inhibitor of Escherichia coli LPS induced p38 phosphorylation. These data show that P. gingivalis LPS modulates host defenses in endothelial cells by interfering with MAP kinase activation. In addition, P. gingivalis LPS is unusual in that it engages TLR-2 but not TLR-4 when examined in stably transfected CHO cell lines. We propose that, since LPS is a key ligand for the human innate host defense system, these unusual properties of P. gingivalis LPS are associated with the bacterium's role in the pathogenesis of periodontitis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available