4.6 Article

Combinatorial reshaping of a lipase structure for thermostability: Additive role of surface stabilizing single point mutations

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2014.04.051

Keywords

Lipase; Thermostability; Circular dichroism; Mutagenesis; Salt bridge

Funding

  1. CSIR, New Delhi

Ask authors/readers for more resources

Thermostable lipases are of high priority for industrial applications. In the present study, targeted improvement of the thermostability of a lipase from metagenomic origin was examined by using a combinatorial protein engineering approach exploring additive effects of single amino acid substitutions. A variant (LipR5) was generated after combination of two thermostabilizing mutations (R214C N355K). Thermostability of the variant enzyme was analyzed by half-life measurement and circular dichroism (CD). To assess whether catalytic properties were affected by mutation, the optimal reaction conditions were determined. The protein LipR5, displayed optimum activity at 50 degrees C and pH 8.0. It showed two fold enhancement in thermostability (at 60 degrees C) as compared to LipR3 (R214C) and nearly 168 fold enhancement as compared to parent enzyme (LipR1). Circular dichroism and fluorescence study suggest that the protein structure had become more rigid and stable to denaturation. Study of 3D model suggested that Lys355 was involved in formation of a Hydrogen bond with OE1 of Glu284. Lys355 was also making salt bridge with OE2 of Glu284. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available