4.4 Article

Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage

Journal

BURNS
Volume 27, Issue 4, Pages 319-327

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0305-4179(00)00137-6

Keywords

Chromolaena odorata extracts; oxidative damage; antioxidant; wound healing; fibroblasts; keratinocytes

Ask authors/readers for more resources

In cutaneous tissue repair, oxidants and antioxidants play very important roles. In local acute and chronic wounds, oxidants are known to have the ability to cause as cell damage and may function as inhibitory factors to wound healing. The administration of anti-oxidants or free radical scavengers is reportedly helpful, notably in order to limit the delayed sequelae of thermal trauma and to enhance the healing process. Extracts from the leaves of Chromolaena odorata have been shown to be beneficial for treatment of wounds. Studies in vitro of these extracts demonstrated enhanced proliferation of fibroblasts, endothelial cells and keratinocytes, stimulation of keratinocyte migration in an in vitro wound assay, up-regulation of production by keratinocytes of extracellular matrix proteins and basement membrane components, and inhibition of collagen lattice contraction by fibroblasts. In this study, the anti-oxidant effects of both total ethanol and polyphenolic extracts from the plant leaves on hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage to human fibroblasts and keratinocytes were investigated. Cell viability was monitored by a colorimetric assay. The results showed that for fibroblasts, toxicity of hydrogen peroxide or hypoxanthine xanthine oxidase on cells was dose-dependent. Total ethanol extract (TEE) at 400 and 800 mug/ml showed maximum and consistent protective cellular effect on oxidant toxicity at low or high doses of oxidants. The 50 mug/ml concentration of TEE also had significant and slightly protective effects on fibroblasts against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage, respectively. For keratinocytes, a dose-dependent relationship of oxidant toxicity was only seen with hydrogen peroxide but the protective action of the extract correlated with oxidant dosage. TEE at 400 and 800 mug/ml showed dose-dependent effects with both low and high concentration of oxidants. TEE at 50 mug/ml had no effect on keratinocytes. Pre-treatment with the extracts did not show a protective effect on cells. Polyphenolic extract exhibited a slight anti-oxidant effect. Protection of cells against destruction by inflammatory mediators may be one of the ways in which the extracts from the plant, C. odorata, contribute to wound healing. (C) 2001 Elsevier Science Ltd and ISBI. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available