4.8 Article

Quartet-based phylogenetic inference: Improvements and limits

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 18, Issue 6, Pages 1103-1116

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/oxfordjournals.molbev.a003881

Keywords

phylogenetic reconstruction. quartet methods; tree consensus; maximum likelihood; parsimony; distance methods; computer simulations

Ask authors/readers for more resources

We analyze the performance of quartet methods in phylogenetic reconstruction. These methods first compute four-taxon trees (4-trees) and then use a combinatorial algorithm to infer a phylogeny that respects the inferred 4-trees as much as possible. Quartet puzzling (QP) is one of the few methods able to take weighting of the 4-trees, which is inferred by maximum likelihood, into account. QP seems to be widely used. We present weight optimization (WO), a new algorithm which is also based on weighted 4-trees. WO is faster and offers better theoretical guarantees than QP. Moreover, computer simulations indicate that the topological accuracy of WO is less dependent on the shape of the correct tree. However, although the performance of WO is better overall than that of QP. it is still less efficient than traditional phylogenetic reconstruction approaches based on pairwise evolutionary distances or maximum likelihood. This is likely related to long-branch attraction, a phenomenon to which quartet methods are very sensitive, and to inappropriate use of the initial results (weights) obtained by maximum likelihood for every quartet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available