4.6 Article

Membership, lithium, and metallicity in the young open clusters IC 2602 and IC 2391: Enlarging the sample

Journal

ASTRONOMY & ASTROPHYSICS
Volume 372, Issue 3, Pages 862-878

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20010339

Keywords

clusters and associations : individual : IC 2602; open clusters and associations : individual : IC 2391; stars : abundances; stars : interiors

Ask authors/readers for more resources

We present lithium abundances for similar to 50 X-ray selected candidate members of the 30-50 Myr old open clusters IC 2602 and IC 2391. These data enlarge and extend to cooler temperatures previous Li surveys of these clusters by Stauffer et al. (1989) and Randich et al. (1997). We also give for the first time an estimate of the metallicity of the two clusters which turns out to be close to solar. Radial velocity measurements together with H alpha chromospheric emission and the presence/absence of other spectroscopic features are used to ascertain the membership status for the sample stars not yet confirmed as cluster members; rotational velocities have also been determined for all sample stars. Stars more massive than similar to1 M-circle dot in both clusters show no sign of significant Li depletion, while lower mass stars are all lithium depleted, with the amount of Li depletion increasing to cooler temperatures. We confirm that the late-G and early-K stars in IC 2602 present a star-to-star scatter in Li abundances similar to, but not as large as the one in the Pleiades. A scatter is also seen among late-K and M dwarfs. Unlike in the Pleiades and Alpha Per clusters, the scatter among early-K stars in IC 2602 shows only marginal correlation with rotation. Our data suggest that the drop-off of lithium towards lower masses may start at an earlier color in IC 2391 than in IC 2602, but larger cluster samples are needed to confirm this result. In addition, whereas G and early K stars in the two clusters are, on average, more Li rich than their counterparts in the Pleiades, a fraction of the coolest stars, in particular in IC 2391, are as depleted as the lowest-Li Pleiades stars of the same mass. If they continue depleting Li on their way to the main sequence, they are expected to be more Li depleted than the Pleiades at the age of the latter cluster.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available