4.6 Article

The BH4 Domain of Anti-apoptotic Bcl-XL, but Not That of the Related Bcl-2, Limits the Voltage-dependent Anion Channel 1 (VDAC1)-mediated Transfer of Pro-apoptotic Ca2+ Signals to Mitochondria

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 14, Pages 9150-9161

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.622514

Keywords

-

Funding

  1. Research Foundation-Flanders [6.057.12, G.0134.09N]
  2. Research Council of the KU Leuven [STRT1/10/044, OT/14/101]
  3. Interuniversity Attraction Poles Program, Belgian Science Policy [P7/13]
  4. Israel Science Foundation [649/09, 307/13]
  5. Research Foundation-Flanders
  6. Innovation by Science and Technology (IWT) Vlaanderen

Ask authors/readers for more resources

Excessive Ca2+ fluxes from the endoplasmic reticulum to the mitochondria result in apoptotic cell death. Bcl-2 and Bcl-XL proteins exert part of their anti-apoptotic function by directly targeting Ca2+-transport systems, like the endoplasmic reticulum-localized inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and the voltage-dependent anion channel 1 (VDAC1) at the outer mitochondrial membranes. We previously demonstrated that the Bcl-2 homology 4 (BH4) domain of Bcl-2 protects against Ca2+-dependent apoptosis by binding and inhibiting IP(3)Rs, although the BH4 domain of Bcl-XL was protective independently of binding IP(3)Rs. Here, we report that in contrast to the BH4 domain of Bcl-2, the BH4 domain of Bcl-XL binds and inhibits VDAC1. In intact cells, delivery of the BH4-Bcl-XL peptide via electroporation limits agonist-induced mitochondrial Ca2+ uptake and protects against staurosporine-induced apoptosis, in line with the results obtained with VDAC1(-/-) cells. Moreover, the delivery of the N-terminal domain of VDAC1 as a synthetic peptide (VDAC1-NP) abolishes the ability of BH4-Bcl-XL to suppress mitochondrial Ca2+ uptake and to protect against apoptosis. Importantly, VDAC1-NP did not affect the ability of BH4-Bcl-2 to suppress agonist-induced Ca2+ release in the cytosol or to prevent apoptosis, as done instead by an IP3R-derived peptide. In conclusion, our data indicate that the BH4 domain of Bcl-XL, but not that of Bcl-2, selectively targets VDAC1 and inhibits apoptosis by decreasing VDAC1-mediated Ca2+ uptake into the mitochondria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available