4.6 Article

Structural and Functional Study of D-Glucuronyl C5-epimerase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 8, Pages 4620-4630

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.602201

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [31230022]
  2. National Science Fund for Distinguished Young Scholars [81125025]
  3. New Drug Creation and Manufacturing Program [2012ZX09301001-003]
  4. Swedish Research Council
  5. Swedish Cancer Foundation
  6. Michigan Economic Development Corporation
  7. Michigan Technology Tri-Corridor Grant [085P1000817]

Ask authors/readers for more resources

Heparan sulfate (HS) is a glycosaminoglycan present on the cell surface and in the extracellular matrix, which interacts with diverse signal molecules and is essential for many physiological processes including embryonic development, cell growth, inflammation, and blood coagulation. D-Glucuronyl C5-epimerase (Glce) is a crucial enzyme in HS synthesis, converting D-glucuronic acid to L-iduronic acid to increase HS flexibility. This modification of HS is important for protein ligand recognition. We have determined the crystal structures of Glce in apo-form (unliganded) and in complex with heparin hexasaccharide (product of Glce following O-sulfation), both in a stable dimer conformation. A Glce dimer contains two catalytic sites, each at a positively charged cleft in C-terminal alpha-helical domains binding one negatively charged hexasaccharide. Based on the structural and mutagenesis studies, three tyrosine residues, Tyr(468), Tyr(528), and Tyr(546), in the active site were found to be crucial for the enzymatic activity. The complex structure also reveals the mechanism of product inhibition (i.e. 2-O- and 6-O-sulfation of HS keeps the C5 carbon of L-iduronic acid away from the active-site tyrosine residues). Our structural and functional data advance understanding of the key modification in HS biosynthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available