4.6 Article

Classical wave-optics analogy of quantum-information processing

Journal

PHYSICAL REVIEW A
Volume 63, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.63.062302

Keywords

-

Ask authors/readers for more resources

An analogous model system for quantum information processing is discussed, based on classical wave optics. The model system is applied to three examples that involve three qubits: (i) three-particle Greenberger-Horne-Zeilinger entanglement, (ii) quantum teleportation, and (iii) a simple quantum error correction network. It is found that the model system can successfully simulate most features of entanglement, but fails to simulate quantum nonlocality. Investigations of how far the classical simulation can be pushed show that quantum nonlocality is the essential ingredient of a quantum computer, even more so than entanglement. The well-known problem of exponential resources required for a classical simulation of a quantum computer, is also linked to the nonlocal nature of entanglement, rather than to the nonfactorizability of the state vector.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available